Florida State University
Dr. Linda Rinaman is currently accepting new graduate students.

Dr. Linda Rinaman

Professor of Psychology and Neuroscience

PDB B434


The ability of animals to mount adaptive responses to emotional and physiological stress is mediated by central neural pathways that control neuroendocrine secretion, autonomic function, and motivated behavior. The long-term objective of Dr. Rinaman's research program is to characterize the functional multisynaptic organization of these neural systems. We also study how early life adversity modifies gene expression and synaptic connectivity within these neural systems to shape emotional responses across the lifespan. Transectional viral and genetic tools are applied in wildtype and genetically modified rats and mice to assess neuroanatomical, physiological, and behavioral endpoints. Our research program offers unique opportunities to test hypotheses about brain structure-function relationships to understand the basis of emotional responses to physiological and cognitive stress, and to reveal mechanisms through which these responses are shaped by early life experience.
Current Research
Our NIH-funded projects focus on (1) the functional organization of neural pathways from caudal brainstem to limbic forebrain that contribute to anxiety-like behavior and threat responses, and (2) how early life adversity induces neural circuit adaptations in vagal sensory and motor “gut-brain” circuits that control these responses. We characterize the axonal projections, synaptic connectivity, chemical phenotypes, and activation profiles of neurons within these circuits to reveal how visceral control systems intersect with hypothalamic and limbic forebrain functions. We use neurotropic and Cre-conditional viruses, chemogenetics, fluorescent in situ hybridization, advanced confocal microscopy, and an array of sophisticated behavioral analyses in our multidisciplinary studies.
Recent Publications
D.I. Brierley, M.K. Holt, A. Singh, A. de Araujo, M. McDougal, M. Vergara, M.H. Afaghani, S.J. Lee, K. Scott, W. Langhans, E. Krause, A. de Kloet, L.B. Knudsen, F.M. Gribble, F. Reimann, L. Rinaman, G. de Lartigue, and S. Trapp. (2021). Central and peripheral GLP-1 systems independently and additively suppress eating. Nature Metabolism 3, 258-273.
Holt, M.K. and L. Rinaman (2021). The role of nucleus of the solitary tract GLP1 and PrRP neurons in stress: anatomy, physiology, and cellular interactions. British Journal of Pharmacology, .
J.W. Maniscalco, C.M. Edwards, and L. Rinaman (2020). Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats. American Journal of Physiology Regulatory Integrative Comparative Physiology 318, R1014-R1023.
K.D. Wall, D.R. Olivos, and L. Rinaman (2020). High fat diet attenuates cholecystokinin-induced cFos activation of prolactin-releasing peptide-expressing A2 noradrenergic neurons in the caudal nucleus of the solitary tract. Neuroscience, 447:113-121.
Edwards CM, Strother J, Zheng H, Rinaman L (2019). Amphetamine-induced activation of neurons within the rat nucleus of the solitary tract. Physiol Behav, 355-363. PubMed
H. Zheng, D.J. Reiner, M.R. Hayes, and L. Rinaman (2019). Chronic suppression of glucagon-like peptide-1 receptor (GLP1R) mRNA translation in the rat bed nucleus of the stria terminalis reduces anxiety-like behavior and stress-induced hypophagia, but prolongs stress-induced elevation of plasma corticosterone. Journal of Neuroscience, 39:2649-2663.
Holt MK, Pomeranz LE, Beier KT, Reimann F, Gribble FM, Rinaman L (2019). Synaptic Inputs to the Mouse Dorsal Vagal Complex and Its Resident Preproglucagon Neurons. J Neurosci, 39(49):9767-9781. PubMed
M.K. Holt, L.E. Pomeranz, K. Beier, F. Reimann, F.M. Gribble, and L. Rinaman (2019). Synaptic inputs to the mouse dorsal vagal complex and its resident preproglucagon neurons. Journal of Neuroscience, 39:9767-9781.
Wall KD, Olivos DR, Rinaman L (2019). High Fat Diet Attenuates Cholecystokinin-Induced cFos Activation of Prolactin-Releasing Peptide-Expressing A2 Noradrenergic Neurons in the Caudal Nucleus of the Solitary Tract. Neuroscience, S0306-4522(19)30647-5. PubMed
Zheng H, Reiner DJ, Hayes MR, Rinaman L (2019). Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. J Neurosci, 39(14):2649-2663. PubMed
Card JP, Johnson AL, Llewellyn-Smith IJ, Zheng H, Anand R, Brierley DI, Trapp S, Rinaman L (2018). GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J Comp Neurol, 526(14):2149-2164. PubMed
Hogue IB, Card JP, Rinaman L, Staniszewska Goraczniak H, Enquist LW (2018). Characterization of the neuroinvasive profile of a pseudorabies virus recombinant expressing the mTurquoise2 reporter in single and multiple injection experiments. J Neurosci Methods, 228-239. PubMed
Lohani S, Martig AK, Underhill SM, DeFrancesco A, Roberts MJ, Rinaman L, Amara S, Moghaddam B (2018). Burst activation of dopamine neurons produces prolonged post-burst availability of actively released dopamine. Neuropsychopharmacology, 43(10):2083-2092. PubMed
Maniscalco JW, Rinaman L (2018). Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda), 33(2):151-167. PubMed
Alhadeff AL, Holland RA, Zheng H, Rinaman L, Grill HJ, De Jonghe BC (2017). Excitatory Hindbrain-Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss. J Neurosci, 37(2):362-370. PubMed
Lipski WJ, Dibble SM, Rinaman L, Grace AA (2017). Psychogenic Stress Activates C-Fos in Nucleus Accumbens-Projecting Neurons of the Hippocampal Ventral Subiculum. Int J Neuropsychopharmacol, 20(10):855-860. PubMed
Maniscalco JW, Rinaman L (2017). Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav, 195-206. PubMed
Kojima S, Catavero C, Rinaman L (2016). Maternal high-fat diet increases independent feeding in pre-weanling rat pups. Physiol Behav, 237-45. PubMed
Kreisler AD, Rinaman L (2016). Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats. Am J Physiol Regul Integr Comp Physiol, 310(10):R906-16. PubMed
Zheng H, Rinaman L (2016). Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain.. Brain Struct Funct, 221(4):2375-83. PubMed
Maniscalco JW, Zheng H, Gordon PJ, Rinaman L (2015). Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats. J Neurosci, 35(30):10701-14. PubMed
Ulrich-Lai YM, Fulton S, Wilson M, Petrovich G, Rinaman L (2015). Stress exposure, food intake and emotional state. Stress, 18(4):381-99. PubMed
Zheng H, Cai L, Rinaman L (2015). Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla. Brain Struct Funct, 220(2):1213-9. PubMed
Zheng H, Stornetta RL, Agassandian K, Rinaman L. (2015). Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats.. Brain Struct Funct, 220(5):3011-22. PubMed

All Publications PubMed

Neuro Grads and Postdocs

Caitlyn Edwards, Graduate Student

Vanessa Garza, Graduate Student

Inge Guerrero, Graduate Student

Huiyuan Zheng, Affiliate - Psychology

Return to List