Douglas Storace
Interest
Perception, decision making and behavior depend on detecting and responding appropriately to sensory information. However, the mechanisms employed by the brain to encode sensory information, and how those signals are transformed into meaningful information that we perceive and act on remains largely unknown. My laboratory investigates this central problem in neuroscience using the mouse olfactory bulb as a model system. By combining neural recording techniques with behavior, we can pursue key questions in olfactory perception. For example, why does our perception of an odor fade when under constant exposure? How can we recognize odors in dynamic and noisy environments? How does our brain bind odor stimuli into perceptual objects that we can recognize and make associations with? How does internal state influence the processing of sensory information? Having a comprehensive characterization how the brain transforms sensory input into perception and behavior will yield fundamental insight into the basic processes by which the entire brain functions.
Current Research
Sensory processing, function and organization of neural circuits, imaging brain activity.